
Planning and Schedulingfor Fleetsof Earth Observing Satellites

JeremyFrank Ari Jónsson
�

Robert Morris, David E. Smith
1. ResearchInstitutefor AdvancedComputerScience(RIACS)

ComputationalSciencesDivision
NASA AmesResearchCenter, MS 269-2

Moffett Field,CA 94035

Abstract

Weaddresstheproblemof schedulingobservations
for a collectionof earthobservingsatellites.This
schedulingtaskis a difficult optimizationproblem,
potentially involving many satellites,hundredsof
requests,constraintson when andhow to service
eachrequest,and resourcessuch as instruments,
recording devices, transmitters,and ground sta-
tions. High-fidelity modelsarerequiredto ensure
thevalidity of schedules;at thesametime, thesize
and complexity of the problemmakes it unlikely
thatsystematicoptimizationsearchmethodswill be
ableto solve themin a reasonabletime. Thispaper
presentsa constraint-basedapproachto solvingthe
EOSschedulingproblem,andproposesastochastic
heuristicsearchmethodfor solvingit.

1 Intr oduction
NASA’s growing fleet of Earth-observingsatellitesemploy
advancedsensingtechnologyto assistscientistsin thefields
of meteorology, oceanography, biology, andatmosphericsci-
enceto better understandthe complex interactionsamong
Earth’s lands, oceans,and atmosphere.Demandon these
satellitesis alreadyhigh, andis expectedto increasesignifi-
cantly in thenearfuture. Currently, scienceactivities on dif-
ferentsatellites(e.g. theAM Constellation)or evendifferent
instrumentsonthesamesatellite(e.g.theASTERinstrument
on the Terra satellite[11]), arescheduledindependentlyof
oneanother, requiring the manualcoordinationof observa-
tionsby communicatingteamsof missionplanners.

It is unlikely that this approachto daily missionplanning
and schedulingwill be viable in the future. As constella-
tion sizesandthenumberof observationrequestsgrow large,
manualcoordinationwill no longerbepossible.A moreef-
fectiveway to manageobservationschedulingis by allowing
customersof the data(viz. the scientiststhemselves)to re-
questdataproducts,andcentrallyscheduleall requestsusing
informationaboutall possibledatagatheringresources.Cus-
tomerpreferenceswill constrainwhich satelliteor satellites
will be usedto collect the data. Automatedtechniquescan
reasonaboutall of theresourcesthatareinvolvedin collect-
ing data,storingthedatatemporarilyon boardsatellites,and
transmittingthe databack to Earth. This will enablemore

efficient managementof the fleet of satellitesaswell asthe
communicationresourcesthatsupportthem.

In this paperwe discusstheproblemof schedulingobser-
vationsfor a collectionof earthobservingsatellites.We first
formulatetheproblemin Section2 asaconstrainedoptimiza-
tion problem,involving a set of observation requests,each
with associatedconstraintsthatmustbesatisfiedby any solu-
tion to theproblem,andasetof resources,includingimaging
instruments,solidstaterecorders(SSRs),antennaeandtrans-
mitters,andgroundstations.Typically, therewill betoomany
observations to schedulewith available satellite resources.
Therefore,weassumerequestsareprioritized,andsearchfor
the bestsubsetof requeststo service,subjectto operational
constraints.In Section3,wesurvey approachesto solvingthe
EOSschedulingproblem.In Section4, we introduceourap-
proachto solvingtheproblem,basedontheConstraint-Based
IntervalPlanning(CBIP)paradigm[16]. In CBIP, actionsand
fluents(or states)are uniformly describedas intervals dur-
ing whicha statevariablemaintainsa particularvalue.CBIP
usesa modelto specifyhow statesarerelatedto eachother
in a plan. Candidateplansarerepresentedby variablesand
constraintswhich reflectthe temporalrelationshipsbetween
actions,orderingdecisionsbetweenactions,andtheparame-
tersof statesor actions. In Section4 we alsoformulateour
approachto conductingandcontrolling an algorithmbased
on Heuristic BiasedStochasticSearch(HBSS) [3] using a
heuristicrelatedto priority andresourcecontention.

2 ProblemDescription
Weassumethatconstellationsof thefuturewill containmany
satelliteswith heterogeneouscapabilities.Thesatellitesmay
bein any orbit. Eachsatelliteis equippedwith a suiteof in-
struments;somesatelliteshave pointableinstruments,giving
increasedflexibility in what they canobserve at any point in
anorbit. Further, someimaginginstrumentsaremeantto be
on almostcontinuously, in order to ensureglobal coverage
(e.g. theETM+ onLandsat7). Othersaredesignedto beop-
eratingon a limited basisto obtainhigh resolution,detailed
mapsof selectedpartsof earth’s landsurface.

Imagedataacquiredby anearthobservingsatelliteareei-
therdownlinkedin real-time,or recordedon boardfor play-
backat a later time. TDRSSsatellitesand groundstations
areavailableto receive downlinked images.Differentsatel-
lites maybeableto communicatewith only a subsetof these



resources,andtransmissionrateswill differ from satelliteto
satellite� and from stationto station. Further, theremay be
differentcostsassociatedwith playingbackdatathroughdif-
ferentgroundstations.

An observationrequestis typicallyspecifiedin termsof the
typeof dataandinstrumentdesired,a seriesof locationsand
timesfor thesensingevent,andapriority for satisfyingthere-
quest.A proposedobservationsequencemustsatisfya num-
berof constraints.Theseconstraintsincludetherequirement
that the observation requestsbe matchedwith the satellites
capableof collecting the requesteddata,and that observa-
tion timesmustobey durationandorderingconstraintsasso-
ciatedwith theimaging,recording,anddownlinking tasks.In
addition,SSRcapacity, andconstraintson communications
equipmentsuchassatelliteantennaeandgroundstationsmust
besatisfied.Theremayalsobeset-uptimesassociatedwith
satellitesystems,whichgeneratefurtherorderingconstraints.
Servicingrequestsmayinvolvecoordinatingactivitiesamong
differentsatellites.For example,a stereoimagewill involve
multiplesensingeventsof thesamelocationatdifferentview-
ing angles. In othercases,adequatespectralcoveragemay
requiretheuseof two or moreinstrumentsto sensethesame
land area,or to senseboth land useandatmosphericcondi-
tions. Finally, scientistsmaywant to imagethesameareaat
differenttimesof day.

Therewill betoomany observationstoschedulewith avail-
ablesatelliteresources.Solutionsarepreferredbasedon ob-
jectivessuchasmaximizingthe numberof high priority re-
questsservicedandtheexpectedquality of theobservations,
andminimizingthecostof downlink operations.

EOSsciencemanagementrequirescontinuousscheduling
andreschedulingof activities. Requestscanbesubmittedat
any time, andhigh priority targetsof opportunity(e.g.,fires,
earthquakes,volcanos)mayresultin theneedfor updatinga
partially executedschedule.In addition,therearenumerous
sourcesof uncertaintyin thesatelliteobservationscheduling
domain.Oneof themostimportant,anddifficult, aspectsof
the EOSschedulingproblemarisesfrom the uncertaintyof
theweather, specifically, with respectto cloudcover. On the
onehand,imagequality typically is heavily determinedby
theamountof cloudcover; on theotherhand,many partsof
the world have long seasonswherecloudsareomnipresent,
andif a simple“no cloud” schedulingpolicy werefollowed,
thesepartsof the world would virtually never be observed.
Thus, it is important to enforcea sophisticatedscheduling
policy whichmollifiesa“no cloud” coverrestrictionwith the
needfor coverage.

3 PreviousWork
Previously reportedwork on EOS schedulingproblemsin-
cludesboth theoreticalinvestigationsusingabstractmodels,
aswell asoperationalschedulersfor ongoingEOSmissions.
We divide our survey of previousapproachesinto two parts:
modelingandalgorithms.

3.1 Modelsof EOSScheduling
Very few theoreticalapproachesconsidermultiple satellites
or the coordinationof observations. Burrowbridge [4] dis-
cussestheimportantproblemof managingtelemetryanddata

acquisition(TDA) resourcesneededbymultiplesatellites,but
doesnot treatproblemsinvolving observations,datagather-
ing, or downlinking data.Theoreticalapproachesusuallyin-
volve simplifiedmodelsof thesatellitesandcommunication
resources.For example,Lemâitreetal. [10], Pemberton[12]
andWolfe andSorensen[18] do not discusson-boarddata
storageor communicationssystemmanagement.Bensanaet.
al. [2] describeproblemswith on-boardstorageconstraints,
but without communicationssystemmanagement.Pember-
ton [12] andWolfe andSorensen[18] assumethat thereare
noprecedenceconstraintsor any otherlogicalconstraintsbe-
tweenthe requests,while Lemâitre et al. [10] andBensana
et al. [2] compile the complex constraintsdown to simple
binaryandtrinaryexclusionconstraints.

There are several operationalsystemsfor ongoingEOS
missions. The ASTER schedulerdescribedin [11] and the
Landsat7 scheduler[13] are two examples. Thesesched-
ulers rely on quite detailedmodelsof the satellitesand the
communicationsenvironment when schedulingoperations.
However, they do suffer from some limitaitons. For ex-
ample, ASTER schedulingis performedindependentlyof
otherinstrumentsonboardtheTerrasatellite.A fixedamount
of memoryis allocatedfor this instrument;if it is unused,
it can’t be usedby any other instrument,resulting in sub-
optimal schedules. Additionally, thesemodelsdo not ac-
count for all of the stepsthat occur on boardthe satellites
during operations. For instance,the ASTER instrumentis
aimable,yet thereis no accountingfor the time requiredto
aim the instrumentbetweenobservations. Similarly, Land-
satrequirestime to shutdown andpower up its instrument;
this is assumedto take placebetweenscenes. While this
may be sufficient for Landsat,it may not be good enough
for future satelliteswith moreadvancedcapabilities.A no-
table exception is ASPEN, which was usedto model and
solve the EO-1 data acquisition schedulingproblem [14;
15]. ASPENis an integratedplanningandschedulingsys-
temthatcanrepresentcomplex resources,activities thattake
time,aswell assubgoalsof activities. However, theschedul-
ing problemdescribedin [15] doesnot appearvery difficult;
EO-1canonly schedule4 observationsa day. It is not clear
how their approachscalesto many satelliteswith many in-
strumentsof varyingcapabilities.

As mentionedpreviously, mostof theproblemsdescribed
in thesepapersareoptimizationproblems.Theusualgoal is
to maximizetheweightedsumof thescheduledobservations.
Wolfe andSorensen[18] describea slightly differentprob-
lem, in which observationsare valuedbasedon when they
areperformedandhow muchdatais collected. This makes
theoptimizationproblemmoredifficult to solve.

3.2 SchedulingAlgorithms
Many of thesearchalgorithmsdescribedin thesepapersare
incompletealgorithms. The primary reasonfor focusingon
suchalgorithmsis that,evenfor smallnumbersof satellites,
the problemsare large enoughthat solving them optimally
is impractical. The usualapproachis to greedilyselectthe
next highestpriority requestto try andschedule,andrejectit
if thereis nowherefor it to go. TheASTER scheduler[11]
worksexactly this way, asdoesof theapproachesdescribed



by Wolfe andSorensen[18]. Pemberton[12] describesafam-
ily of� algorithmsranging from strictly greedyto complete
search;after sorting the requests,blocks of � requestsare
scheduledoptimally, with all previous allocationsactingas
constraintson thenext setof observationsto schedule.Wolfe
andSorensen[18] describea greedysearchwhich sortsre-
questsbypriority, breakingtiesusingtheamountof slack(ex-
traspacefor therequest),thengreedilyschedulingtherequest
in thebestplacefor it. A modificationperformslookaheadto
decidewherethe requestleadsto thebestschedule,thereby
accountingfor its future impact. Anothermodificationgen-
eratesinput listsusingageneticalgorithm,with theoptionof
rejectinga requestpreemptorily. Burrowbridge’s scheduler
[4] greedilyschedulesrequestsbasedontheearliestfinishing
time of the request.The Landsat7 scheduler[13] greedily
schedulesrequestsbasedon the earliestfinishing time until
resourcesrunout, thenpreemptspreviouslyscheduledobser-
vationsbasedon priority. ASPEN[14] usesa local search
algorithm that generatesan initial schedule,then identifies
andrepairsconflictsin thescheduleby changingvariableas-
signments.This algorithmis quite complex, with 10 distin-
guishedtypesof conflictsandheuristicsrequiredto identify
boththeconflict to work onandthemethodof addressingit.

As a final note, the priority of observationsis normally
derived from a numberof factors,someof which are dy-
namicallydetermined.For example,estimatedcloud cover
andnearnessto theendof thefeasibility window arenormal
inputs. The Landsat7 scheduler[13] alsoattemptsto find
scheduleswith long sequencesof adjacentscenesto reduce
theoverheadondataacquisitions.

4 TechnicalApproach
Webelievethateffectivecoordinationof EOSsrequireshigh-
fidelity modelingof the entireEOSenvironment. Not only
do we needto modelon-boardsatelliteresources,communi-
cationresourcesandrequests,but wemustalsomodelthede-
tailedactivity sequencesonthespacecraftandontheground.
However, wewould liketo makeuseof searchtechniquesde-
velopedfor solvingcombinatorialproblems.To balancethese
needs,weusetheConstraint-BasedInterval Planning(CBIP)
framework.

4.1 Constraint-BasedInter val Planning
The CBIP framework [16] is basedon an interval represen-
tation of time. A predicateis a uniform representationof
actionsandstates,andan interval is theperiodduringwhich
a predicateholds. A token is usedto representa predicate
which holds during an interval. Eachtoken is definedby
the start,endanddurationof the interval it occurs,aswell
as other parameterswhich further elaborateon the predi-
cate. For instance,a Take-Image predicatemay have a
parameterdescribingtheresolution,whichcanbeeitherlow
or high. The planningdomain is describedby planning
schematawhich specify, for eachtoken, other tokens that
must exist (e.g. pre and post conditions),and how the to-
kensarerelatedto eachother. Figure1 shows anexampleof
a planningschema.Schematacanspecifyconditionaleffects
anddisjunctionsof requiredtokens.For instancein Figure1,

aTake-Image intervalcanbemetby aCalibration pe-
riod if ahighresolutionimageis to betaken.Thevalueof the
?mode parameterindicateswhetheror notaCalibration
periodis required.Planningschematacanalsoincludecon-
straintsontheparametersof thetoken.As shown in Figure1,
theTake-Image interval hasaconstraintrelatingthemode
andtheamountof datastoredby theoperation.

EUROPA [6] is aCBIPplanningparadigmwhichcontinu-
ouslyreformulatestheplanningproblemasa DynamicCon-
straintSatisfaction Problem(DCSP).This is doneby map-
pingeachpartialplantoaCSP. Thetemporalconstraintsform
a SimpleTemporalNetwork, which canbeefficiently solved
[5], while the rest of the constraintsform a general,non-
binary CSPrepresentedby proceduralconstraints[8]. An
additionalfeatureincludesthe ability to produceplanswith
flexible time; that is, activities maystartandendat any time
in aninterval [9]. Thisgivestheplansomeflexibility , should
activitiestakelongeror shorterthanexpected.Figure2 shows
a plan fragmentand its inducedCSP. Assignmentsof vari-
ablesin theCSPcorrespondeitherto theaddingof new plan
steps,or theassignmentof parametersof plansteps.As steps
areaddedto or removed from the plan, the CSPis updated
to reflectthe currentpartial plan. For example,in Figure2,
addingthe Take-Image stepto the plan requiresadding
severalnew variablesandconstraintsto theCSP. At any time,
if theCSPis inconsistent,thenthepartialplanit representsis
invalid; if asolutionis foundto theCSP, thenthatsolutioncan
bemappedbackto a planwhichsolvestheproblem.Thead-
vantageof sucha representationis thatany algorithmwhich
solvesDCSPscanbeusedto solve theplanningproblem.

Take−Image(?lat,?long,?angle,?mode):−

SSR−Capacity(?init,?final,?duration,?mode)

meets Idle()

Eq(?mode,HIGH) −> met−by Calibrate()

Parameter 
Constraints

Disjunctive 
Constraints

Interval 
Constraints

Figure1: Theplanningschemafor aTake-Image interval.
This schemaconsistsof four components:the mastertoken
of theschema,constraintson theparametersof theschema,a
descriptionof othertokenswhichmustexist whenthemaster
token is in the plan, anda disjunctionof tokenswhich may
exist whenthemastertokenis in theplan.

EUROPA has the ability to model various types of re-
sources.A domainmodelconsistsof a numberof attributes,
eachof whichrepresentsanaspectof theobjectsthatinteract
in theworld. Eachof theseattributesmaybein only onestate
at a time; hence,if a camerais takinganimage,it can’t also
beturning.Thispermitssimplemodelingof resources.Com-
plex resourcessuchasfuel andpower canbemodeledusing
numericalconstraints.In Figure1, the filling of the SSRis
modeledby aconstraintthatrelatestheinitial amountof stor-
age,thefinal amountof storage,andtherateatwhichthedata
acquisitiontaskfills thebuffer.



Take−Image(?lat,?long,?angle,?mode)Calibrate(?mode)

C_start C_end

C_dur

TI_start TI_end

TI_dur

TI_finalTI_init

TI_mode

meets

Eq

AddEq
AddEq

Data−Level

Figure2: A partial plan and its DCSPrepresentation.The
partialplanconsistsof 2 tokens,shownatthetopof thefigure.
The DCSPvariablesare in roundedboxes. Edgesbetween
DCSPvariablesarelabeledwith theconstraintsonthosevari-
ables.

4.2 A CBIP Model of the EOSDomain
A CBIP model for the EOS domain will describethe at-
tributesof a setof satelliteswith different typesof sensing
instrumentsandresources,aswell asdifferentorbital tracks.
Resourcesto bemodeledfor eachsatelliteincludetheinstru-
ments,the SSR,and a set of antennaeand transmittersfor
downlinking data.We not explicitly modelpower consump-
tion or satellitemaneuveroperations,althoughmaneuverpe-
riodsandpower-relateddutycyclesmayconstrainthesched-
ule. Othermodelelementsaredatareceiving stations,either
groundstationsor TDRSSsatellites.

A sensinginstrumentis definedprimarily in termsof the
type of data it acquires,its spatial and spectralresolution
(for spectrometers),its swathwidth, andpointinglimitations
(field of view, slew rate,andsoon). A solid staterecording
device (SSR)is definedby thestoragecapacityandthe rate
atwhichit storesdata.Antennaeandtransmittingdevicesare
definedby whetherthey areslewable,andalsoby their data
transmissionrate.Datareceiving stationsareassociatedwith
a frequency band,andalsoby thenumberof downlink chan-
nels they support. Eachof theseentitieswill correspondto
oneor moreattributesof a model.

Requestsareidentifiedby their location,eitherspecifiedin
World ReferenceSystem(WRS) units, or latitudeand lon-
gitude. We may also model a “Quality of Service” (QoS)
typefor eachrequest.For example,in Landsat7, requestsfor
imagesmadeby non-U.S.internationalgroundstationsare
usuallyservicedthroughdirect downlink to the the request-
ing groundstation.By contrast,so-called”special” requests
on Landsat7 correspondingto exceptionaleventsare typi-
cally simultaneouslyrecordedanddirectly downlinked to a
groundstation,andlateralsoplayedbackfor redundancy. As
notedearlier, requestsareassociatedwith a user-definedpri-
ority, but other, derivedprioritiesemergeduringtheschedul-
ing process.For example,a requestmayundergo a boostin
priority asaresultof thedelaysincetheprevioustimeanim-
ageof theareawastaken,or becauseof limited opportunities
for capturingthe image. Conversely, a requestpriority may
be demoteddueto expectedexcessive cloud cover over the

area.A givenrequestmayalsocorrespondto a coordinated
activity involving multiple instruments.Coordinatedobser-
vationactivities arisefor many reasons,for example,to take
a stereoimageof an area,to samplea region over different
spectralregions,or to calibrateinstruments.

Eachattribute of a CBIP modelsupportsa limited setof
activities. Thus, an SSR can be recording,playing back
data,or idle, anantennacanbeslewing, or pointing to a re-
ceiving station,andan imaginginstrumentcanbe off, idle,
or taking an image. The model will also representset up
events such as warming up an instrument,or slewing for
antennaeor pointablesensinginstruments. Temporalcon-
straintsimposerestrictionson the durationand orderingof
tokens in a plan. Temporalconstraintsmay be associated
with a singleactivity, suchasthe constraintthat an antenna
be slewed to a certain location before it can begin point-
ing at that location; or a temporalconstraintcan involve
pairsof activities, suchas the constraintthat a groundsta-
tion must be in contactwith a satellite while data is be-
ing downlinked. Resourceconstraintsinclude SSRcapac-
ity, communicationbandwidth,anddutycyclerestrictionson
imaging instruments. Figure 3 shows how all of theseas-
pectsarecombinedin a simplemodel.Thismodelshows the
interactionof an instrumentattribute and an SSRattribute.
The instrument transitionsbetweenPointing, Idle,
Calibrating and Take-Image. The SSR transitions
betweenRecording, Playback andIdle. The time
requiredfor Pointing, Calibrating, Recording
and Playback activities are constrained. In addition,
Take-Image andRecording activities mustbesimulta-
neous,and whenever a Playback occurson the SSRthe
instrumentmustbeIdle.

IdleCalibration

Take−Image

Instrument Attribute

Idle

Playback

SSR Attribute

Record

Equal

Contained−By

Point Pointing−Time(t,a,b): 
  t = c(|b−a|)

Playback−Time(t,r,d) 
  t = dr

Record−Time(t,r,d) 
  t = dr

Calibrating−Time(t,a): 
  t = ca

Figure3: Simplifiedmodelshowing theinteractionof instru-
mentandSSRattributes.



The EUROPA plannersupportsobject-orienteddescrip-
tions� of models.Mostsubsystemsof satellitesarequitesimi-
lar, soweexpectthatwecandefinea relatively largenumber
of differentsatellitesquite easily. We canthenvary the pa-
rametersof thesedifferentsatellitemodelsto createmoreor
lesschallengingEOS domains. For instance,we can vary
the transmissionratesand SSRcapacitiesof the satellites,
the numberof groundstationsor TDRSScontacts,as well
aschangethe instrumentmakeupof satellites,to assessthe
impactof differentscenariosfor particularsetsof requests.

5 The HBSSAlgorithm
In theory, the optimal solution to an observation schedul-
ing problemcanbe found usingthe well known systematic
branchandboundalgorithm.Unfortunately, completesearch
algorithmsaresimply not practicalfor most large schedul-
ing problems.Bensanaet al. [2] indicatethat they wereun-
ableto optimally solve problemswith morethanabout200
observationsusingRussianDoll Search(acleverbut special-
izedvariationonBranchandBound).Pemberton[12] makes
similar observations. The only alternativesareto usesome
form of greedysearchor hill-climbing search,possiblyaug-
mentedwith stochasticvariationto escapelocaloptima.For-
tunately, for observationschedulingtheseapproachestendto
work well, becausethereareusuallymany local optimathat
arenearlyasgoodasthe global optimum. Thus,by inject-
ing stochasticvariation into a greedysearchprocedureone
of theseresonablygoodsolutionscanusuallybe foundvery
quickly.

For our purposes,we have chosento overlay a stochas-
tic greadysearchalgorithm on the constraint-basedplan-
ning techniquesdiscussedearlier. In particular, the greedy
searchwill chooseandscheduleobservations,andthe con-
straintbasedplanningfoundationwill propagateconstraints
to ruleoutpossibilitiesinconsistentwith eachobservationas-
signment,and expandindividual observationsby including
any necessarysetupandpostprocessingstepsrequiredby the
scheduledobservations. The stochasticgreedysearchalgo-
rithm is basedon theHBSSalgorithmdevelopedby Bresina
[3]. Thebasicalgorithmfor HBSSlookslikeasimplegreedy
searchwith restarts.A modifiedversionof thealgorithmap-
pearsin Figure4.

What distinguishesthe HBSS algorithm from ordinary
greedysearchis theway in which alternativesarechosenin
theSelectObsandSelectTime steps.In apuregreedysearch,
thesechoicesaremadeabsolutelyby aheuristic.In theHBSS
algorithm, the heuristicmust rank or scorethe possibleal-
ternatives.HBSSthenchoosesprobabilisticallyfrom among
thealternatives,weightedaccordingto their rankingor score.
Thus,possibilitiesrankedhighly by theheuristichavehigher
probability of beingselected,but other lower ranked possi-
bilities aresometimesselected.Thismeansthatseveralalter-
nativeswith roughly thesamescorewill have roughlyequal
probabilityof beingchosen.Becauseof this stochasticchar-
acter, alternativeschedulesarelikely tobeexploredwith each
successive restartof thealgorithm.

The Propagate step performs simple inferencesafter
schedulingan observation. Theseinferencesincludeelimi-

procedureHBSS( ���	� )
���

while ���������

� �

SelectObs( ����� )� �
SelectTime( � )
���
�� � startingat time

�
����� � ������� �
��

Propagate(



)
if noplanfoundreturn



endwhile
FindPlan(



)

return



end

Figure4: HBSSModified for theEOSSchedulingproblem.
Thealgorithmrepeatedlyselectsanobservation,thenselects
a time to scheduletheobservationor rejectstheobservation.
This assignmentis addedto the plan, and Propagatethen
performsany inferencesthat result from the schedulingof
theobservation.If all observationsarescheduledor rejected,
FindPlan attemptsto scheduleandsubgoalsthatneedto be
scheduled,andthe resultingplan (theremay not be one) is
returned.HeuristicsstronglydrivetheSelectObsandSelect-
Time steps.

natingchoicesfor observationsandotherwiseeliminatingthe
valuesof variablesin the DCSPrepresentationof the plan,
but mayincludeinsertingsubgoalsinto theplan.HBSSonly
selectsobservationsto bein theplan;thesemayleadto sub-
goals,andthesealsoneedto be insertedin theplan. Before
the HBSSprocedurecompletes,any subgoalsthat have not
beeninsertedinto theplanmustbe handled;this is doneby
theFindPlan step.

Like most searchprocedures,the effectivenessof HBSS
dependscritically on the quality of the heuristic advice.
Bresina[3] has shown that HBSS is particularly effective
whenthe rankingheuristicstypically give goodadvice. As
the quality of the heuristic advice declines, HBSS must
searchprogressively longer (morerestarts)to find nearop-
timal schedules.In the next sectionwe develop contention
heuristicsfor rankingobservationchoices.

5.1 Contention Heuristic
The successof Greedysearchmethodsdependslargely on
theheuristicusedto decidewhichvariableto assignnext, and
whichvalueto assignto thatvariable.Thesestepscorrespond
to theSelectObsandSelectTime steps.

For observationscheduling,anobviousheuristicfor choos-
ing anobservationis to selecttheonewith thehighestprior-
ity. In general,this will ensurethat the scheduleis loaded
with as many high priority observationsas possiblebefore
any lower priority observationsare considered. However,
theremaybe many observationswith thesamepriority, and
the orderin which we considertheseobservationscanhave
a dramaticimpacton the resultingschedule.For example,
considerthe simpleexampleshown in Figure5. Herethere
aretwo observations,A andB, of equalpriority. As shown,



Take−Image B

1 2 4 5 98 10 12 133 76 11

Take−Image A Take−Image A Take−Image AComm Comm

Figure 5: The impact of variable and value order-
ing. Take-Image A has threepossibletimeslots,while
Take-Image B hasonly 1. Thetemporalconstraintsimply
thatschedulingTake-Image A at time1 makesit impossi-
bleto scheduleTake-Image B atall, sinceit canonly start
at time2.

thereareseveralopportunitiesfor schedulingA, but only one
opportunityfor schedulingB, which overlapswith the first
opportunityfor A. If wechooseobservationA first, andfool-
ishly scheduleit in thefirst availabletimeslot, thenobserva-
tion B will notappearin theschedule.In contrast,if wewere
to scheduleB first, otheropportunitieswouldstill remainfor
observationA.

Theseexamplessuggesta simpleruleof thumbfor choos-
ing which observationto schedulenext: preferobservations
having thefewestremainingopportunities.This heuristicre-
semblesthe Minimum RemainingValues(MRV) heuristic
commonlyusedin the CSPcommunity[7]. Calculatingthe
numberof remainingopportunitiesfor anobservation is ap-
pealingbecauseit is simpleto compute,andprovidesat least
someestimateof how easyit is to schedulethat particular
observation. However, it doesnot give any estimateof how
much”contention” thereis for thoseopportunities.For ex-
ample,if therearetwo remainingopportunitiesfor ahighpri-
ority observation,but absolutelynocontentionfor oneof the
timeslots,thentheobservationwill alwaysbeeasyto sched-
ule. In contrast,if therearenumerousotherobservationsthat
couldusethosetimeslots,thenthereis goodreasonto sched-
ule the observation early, to make sureit getsoneof those
timeslots.

This leadsus to a more sophisticatedmeasureof con-
tention. To startwith, we will only considercontentionfor
time slots. We first define someterms: ����� �	!#"%$'& (*),+��.-/&10
is the set of observations that could occur at time

�
, and��2324),! & 53+�(6&#(7�.�8-9):0 is thesetof discreteopportunitiesfor ob-

servation � (noting that eachdiscreteopportunityis exactly
long enoughto accomodatethe window.) For a given time
slot,wecouldmeasurecontentionby countingthenumberof
observationsthatwantthattimeslot,weightedby thepriority
of theobservation:

; )<+:& �	+:&#(7)<+=-/&10 � >
?8@,ACB	DFEHGFIKJKLNM ?#O	DQPRLNS%T !#(7)<! (7&QUC-F)V0

However, thismeasuredoesn’t incorporatehow badlyeach
observationneedsthetime slot; i.e. if anobservationcanbe
scheduledin only that time slot, it needsthe time slot badly,
but if it can be scheduledin lots of different time slots, it
doesn’t needthetimeslotverybadlyatall.

We candefinetheneedof anobservationas:

W �8�8XY-9):0 � T ! (*),!#(7&QUZ-9):0[ ��2324),! & 5�+3(6&#(7�.�8-9):0 [

Thecontentionfor aparticulartimeslotcanthenbedefined
as:

; )<+:& �	+:&#(7)<+=-/&10 � >
?8@,ACB	D9EHG/IKJ L9M ? O8DHPRLNS

W �8�8XY-9):0
Thecontentionfor aparticularobservationcanthenbede-

finedas:
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We take theminimumbecausetheremaybeaneasyplace

to put an observation, andthe contentionof an observation
shouldnot beloweredby slotsthatarein higherdemand.In
otherwords,addinganotheropportunityfor an observation
shouldnever increasethecontentionmeasurefor thatobser-
vation.Note,however, thatcontentionshouldberecomputed
asobservationsarescheduledto accountfor slotsthatareno
longeravailable,leadingto highercontentionfor theremain-
ing observations.

In developingthe equationsabove, we regardedobserva-
tions as if they only requireda single sceneor time slot,
and could only be scheduledfor that slot (i.e. no win-
dow of opportunity). For observations that involve a se-
quenceor group of sceneswe would have to sum up (or
maximizeover) the contentionmeasuresfor eachof the in-
dividual scenes(time slots). With pointable instruments,
there is an interval during which a given scenecould be
taken. This can also be incorporated(with somefurther
complicationof the equations);this would resembleheuris-
tics that attemptto maximize the slack in a schedule[17;
1].

Measuringcontentionfor a global resourcelike SSRca-
pacity involves generalizingthe above contentionmeasure
to considerthe amountof the resourceneededby an obser-
vation, the resourcecapacity, andthe interval of time under
consideration.

Let `a�8b:53(*! �.�8-9)�c !_0 be1 if observation � requiresresourced and0 otherwise,andlet
; $,2�$,e	(6&QUC-F!.cK(/0 bethecapacityof a

resourceovera time interval f . Thus,anSSRwith a capacity
of g'h hasa

; $,2�$,e	(6&QUC-9!8c (i0 � g'h ; if a playbackof j,h units
occurswithin the interval f , then

; $,2�$,e	(6&QUC-F!.cK(/0 �lk h . We
thengeneralizetheabovedefinitionsto be:
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Again, note that thesemeasureschangeas activities are
scheduled.In particular, asactivities thatemptytheSSRare
scheduled

; $'2p$,e�(7&QUC-F!.cK(/0 may increase,andasobservations
arescheduled

; $,2�$,e	(6&QUC-F!.cK(/0 maydecrease.Intuitively, these
contentionmeasuresprovide a moreaccurateassessmentof
how hard it is to actually schedulean observation. Using
thesemeasures,ourvariableorderingheuristicis:



Schedulethe observation of highestpriority and
highestoverallcontention

wherecontentionwill bea weightedsumof contentionmea-
suresfor the different resources(time slots, SSRcapacity,
. . . ). This approachassumesthatresourcesareindependent;
while not true, it doesprovide anefficiently computableap-
proximation. This heuristicprovidesa rankingof observa-
tionssuitablefor usewith theHBSSsearchprocedure.

Givenanobservationto schedule,we would preferto put
it in the placewhereit will competewith the fewestother
observations. We canusethe above contentionmeasuresto
defineavalueorderingheuristic:

Scheduleanobservationin theopportunitywith the
leastcontention

Again, this heuristicprovidesa rankingsuitablefor usewith
theHBSSsearchprocedure.

6 Conclusionsand Future Work
We have presentedthe problemof schedulingobservations
on a collectionof EarthObservingSatellitesanddiscusseda
candidaterepresentationandsolutionmethodology. In order
toproducegoodplans,weadvocatedahigh-fidelitymodelin-
corporatingboth satelliteresourcesandcommunicationsre-
sources.In orderto gainmaximumflexibility in solvingprob-
lems, we usedthe CBIP paradigm,which gives us access
to algorithmsfrom the DCSPcommunity. We believe that
this problemis largeenoughandcomplex enoughthat a bi-
asedgreedystochasticsearchmethodwith a well-motivated
heuristicis the bestapproach. We have motivatedand de-
scribedsucha heuristic,andshown how it canbeintegrated
with a modifiedform of theHBSSalgorithm.

Ournext tasksareto choosethefinal form of theheuristic,
selectthebiasfunctionto beusedwith HBSS,andselectthe
exact methodby which subgoalsof scheduledobservations
will beinsertedinto theplan. Oncethis is done,we canthen
begin experimentsto testtheeffectivenessof this procedure
on large,heterogeneousEOSschedulingproblems.
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[10] M Lemâitre, G. Verfaillie, F. Jouhaud,J. Lachiver, and
N. Bataille. How to managethenew generationof agileearth
observation satellites? In Proceedingsof the International
Symposiumon Artificial Intelligence, Roboticsand Automa-
tion in Space, 2000.

[11] H. Muraoka,R. Cohen,T. Ohno,andN. Doi. Asterobserva-
tion schedulingalgorithm.In Proceedingsof theInternational
SymposiumSpaceMissionOperationsandGroundData Sys-
tems, 1998.

[12] J. Pemberton. Towardsschedulingover-constrainedremote
sensingsatellites.In Proceedingsof the2dInternationalWork-
shoponPlanningandSchedulingfor Space, 2000.

[13] W. PotterandJ. Gasch.A photoalbum of earth: Scheduling
landsat7 missiondaily activities. In Proceedingsof theInter-
national SymposiumSpaceMission Operations and Ground
DataSystems, 1998.

[14] G.Rabideau,R.Knight,S.Chien,A. Fukanaga,andA. Govin-
djee.Iterativeplanningfor spacecraftoperationsusingtheAS-
PENsystem.In Proceedingsof the InternationalSymposium
on Artificial Intelligence, Roboticsand Automationin Space,
1999.

[15] R. Sherwood, A. Govindjee,D. Yan, G. Rabideau,S. Chien,
andA. Fukanagaand.UsingASPENto automateEO-1activ-
ity planning. In Proceedingsof the IEEE AerospaceConfer-
ence, 1998.

[16] D. Smith, J. Frank, and A. Jónsson. Bridging the gap be-
tweenplanningandscheduling.Knowledge EngineeringRe-
view, 15(1),2000.

[17] S. SmithandC. Cheng. Slack-basedheuristicsfor constraint
satisfactionscheduling. In Proceedingsof the EleventhNa-
tional Conference on Artificial Intelligence, pages139–44,
1993.

[18] W. Wolfe andS. Sorensen.Threeschedulingalgorithmsap-
plied to the earthobservingdomain. ManagementScience,
46(1),2000.


